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Abstract Land skin temperature (Ts) is an important parameter in the energy exchange between the land
surface and atmosphere. Here hourly Ts from the Community Land Model version 4.0, Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite observations, and in situ observations from the Coordinated
Energy and Water Cycle Observation Project in 2003 were compared. Both modeled and MODIS Ts were
interpolated to the 12 station locations, and comparisons were performed under MODIS clear-sky condition.
Over four semiarid stations, both MODIS and modeled Ts show negative biases compared to in situ data, but
MODIS shows an overall better performance. Global distribution of differences between MODIS andmodeled
Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally
lower than the MODIS-observed Ts during the daytime, while the situation is opposite at nighttime. The
revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. (2012)
bring the modeled Ts closer to MODIS during the day and have little effect on Ts at night. Five factors
contributing to the Ts differences between the model and MODIS are identified, including the difficulty in
properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and
uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and
MODIS Ts data. These findings have implications for the cross evaluation of modeled and remotely sensed Ts,
as well as the data assimilation of Ts observations into Earth system models.

1. Introduction

Land skin temperature (Ts) is one of the key variables of the earth system, acting as the lower boundary of
the atmosphere. The difference between Ts and overlying atmospheric temperature (Ta) determines the
partitioning of surface energy fluxes into sensible and latent heat fluxes [Garratt, 1995; Prigent et al., 2003].
Ts also controls the amount of heat transfer from the land surface into the soil and then indirectly affects
thermal states in the deep soil. Hence, there is potential to improve land surface flux forecasts by assimilating
Ts observations [e.g., Bosilovich et al., 2007; Ghent et al., 2010; Reichle et al., 2010; Xu et al., 2011]. Although the
importance of Ts has been recognized, the accuracy of global Ts data sets over land is not well understood.

Land surface models (LSMs) driven by observation-based atmospheric data are widely used to produce Ts.
The upward longwave radiation fluxes simulated by LSMs combined with downward longwave radiation
fluxes and the surface emissivity can be used to estimate long-term high-resolution Ts continuously. Solar
radiation is the primary driving force of Ts, which is evident in clearly correlated diurnal and seasonal
variations. The magnitude of modeled Ts is affected by surface land cover, soil moisture, and soil properties
(e.g., soil albedo and soil texture). Due to large land surface heterogeneities, energy fluxes are difficult to
simulate accurately in LSMs. Even over a bare ground grid cell, LSMs still have difficulty in realistically
producing skin temperature and surface fluxes [Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012].
Efforts have also been made to improve the simulation of Ts in LSMs. For example, the underestimation of
diurnal Ts variation over the Tibetan Plateau is a notable deficiency in most LSMs due to the incorrectly
parameterized roughness length for heat (zoh). Yang et al. [2002] developed a new zoh formulation from
observations at the Tibetan Plateau to improve surface turbulence flux parameterization over bare soil
surface, which also improved the Ts simulation in the Noah LSM [Chen et al., 2010]. Based on theoretical
arguments and synthesis of previous observational and modeling efforts, Zeng et al. [2012] improved the
Ts diurnal range simulated over bare ground in two LSMs through zoh revisions, constraining minimum
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friction velocity and modifying the soil thermal conductivity. Zheng et al. [2012] adopted a new vegetation-
dependent formulation of momentum and thermal roughness lengths in the National Center for
Environmental Prediction (NCEP) Global Forecast System and substantially reduced the cold forecast bias
during the day, which then improved the brightness temperature in the NCEP data assimilation system.

Many previous evaluation and validation studies involving Ts modeling have been based on single point
station measurements. However, Ts is not a routinely measured variable at meteorological stations, and it is
only available at a very limited number of stations with relatively short data records [e.g., Augustine et al.,
2000; Baldocchi et al., 2001]. Satellite observations can produce land surface measurements over large areas
with high spatial resolutions. For example, global clear-sky Ts products from the Moderate Resolution
Imaging Spectroradiometer (MODIS) [Salomonson et al., 1989] have been available since 2000. The MODIS
sensor provides a quality data source of Ts for model evaluation from four daily satellite overpasses [e.g.,
Ghent et al., 2010] and for data assimilation [e.g., Xu et al., 2011].

In this study, through comparisons of Ts from the Community Land Model version 4.0 (CLM4) with both the
MODIS (globally) and in situ station measurements (at 12 locations), we test whether the differences between
monthly mean Ts from these three data sources can be used to better identify errors in, and hence make
improvements to, either of the modeled or remotely sensed data sets. At the same time, in order to improve
the global Ts simulation over bare soil surfaces, the new parameterization schemes in Zeng et al. [2012] were
implemented into CLM4.0. Comparing these three data sets is not straightforward, since substantial
representative differences are expected between Ts estimates obtained from in situ sensors, remote sensors,
and land surface models, most notably due to the differences in the typical spatial resolution of each of
these estimates.

Section 2 introduces the MODIS Ts, while section 3 describes the computations of Ts in CLM4.0 and the
modification of parameterizations. Results are presented in section 4, and a summary is given in section 5.

2. MODIS Skin Temperature and In Situ Observations

Two MODIS instruments were installed on the NASA Terra and Aqua satellite platforms, which were
launched in December 1999 and May 2002, respectively. Aqua overpasses around local solar time of 1:30 P.M.
(ascending mode) and 1:30A.M. (descending mode), while Terra is around 10:30A.M. (descending mode) and
10:30 P.M. (ascending mode). The global 0.05° × 0.05° spatial resolution hourly MODIS collection 5 Ts data
(MODIS product name: MOD11C3/MYD11C3) used in this work were retrieved from the thermal infrared (TIR)
bands using the generalized spilt-window algorithm [Wan and Li, 2008]. Since the surfaceTIR signal is difficult to
determine with the presence of clouds, the MODIS Ts product includes information on the individual cloud-
covered days at each overpass time that were used to filter out cloud-contaminated observations when
calculating the mean monthly observed (in situ or remotely sensed) Ts.

The accuracy of satellite Ts is affected by surface retrieval techniques, cloud conditions, and land surface
properties [Wan et al., 2004;Wan and Li, 2008], which all significantly constrain the application range of such
products. Therefore, evaluation and validation of remote sensing products based on ground measurement
values are important and necessary [e.g., Wan et al., 2002, 2004; Wan and Li, 2008; Wang and Liang, 2009;
Zheng et al., 2012]. For example, Wan et al. [2004] used the observed data over 20 stations to validate the
MODIS Ts. Wang and Liang [2009] evaluated the MODIS Ts with six Surface Radiation Budget Monitoring
stations [Augustine et al., 2000]. Studies such as these are essential to understanding the application
capability and accuracy of satellite-observed Ts.

The Coordinated Energy and Water Cycle Observation Project (CEOP) provides in situ surface meteorology
measurements at multiple stations globally, which facilitates the evaluation of both model simulations and
remote sensing products. The Ts observations from CEOP have been widely used in satellite data evaluations
[e.g., Catherinot et al., 2011; Jiménez et al., 2012] and model evaluations [e.g., Yang et al., 2002; Chen et al.,
2010]. For example, Catherinot et al. [2011] evaluated microwave-derived Ts with in situ observations at ten
CEOP stations. Here the twelve CEOP stations in 2003 over various climate conditions and vegetation
coverage are selected. Since equations (3) and (4) below only affect model simulations over bare soil surfaces,
four stations over semiarid regions dominated by bare soil are selected to perform a more extensive analysis
(Table 1). More information and details of CEOP data can be found at http://www.ceop.net.
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3. Skin Temperature in CLM4.0

CLM4.0 is the land component of the Community Earth System Model, and it can also be used as a stand-
alone model to simulate the land surface heat and hydrological variables [Lawrence et al., 2012], as used here.
Compared with earlier versions of the model, CLM4.0 has several important modifications and has
implemented additional components, including updates to soil hydrology, soil thermodynamics, albedo
parameters, a carbon nitrogen biogeochemical model, an urban canyon model, and revised soil and snow
submodels [Oleson et al., 2010; Lawrence et al., 2011]. The surface skin temperature Ts for a model grid box is
not explicitly computed in CLM4.0, but it can be derived from the surface incoming (LW↓) and outgoing
(LW↑) longwave radiation combined with surface emissivity (ε)

εσT4s ¼ LW↑� LW↓ � 1� εð Þ; (1)

where σ= 5.67 × 10�8Wm�2 K�4 is the Stefan-Boltzmann constant. In CLM4.0, surface emissivity over
nonvegetated surfaces is constant: 0.96 for soil and wetland and 0.97 for glacier. Over vegetated surfaces,
surface emissivity (εv) is a function of the leaf (L) and stem area index (S)

εv ¼ 1� e� LþSð Þ=μ; (2)

where μ ¼ 1 is the average inverse optical depth for longwave radiation. The grid box in CLM4.0 is a hybrid of
different land unit types (e.g., bare soil, vegetation, glacier, wetland, and urban). Over the vegetated part of a
grid cell, the vegetation can be described by up to 16 unique vegetation categories [Oleson et al., 2010]. The
grid box averaged LW↑ in the model is computed from the areal weighted LW↑ from both vegetated and
bare ground areas.

It has been widely recognized that zoh is important in the parameterization of surface fluxes [Zeng and
Dickinson, 1998; Yang et al., 2002, 2008; Zeng et al., 2012]. In LSMs, zoh is usually a function of roughness length
of momentum (zom) for bare surfaces or proportional to the canopy height for the vegetated surfaces [Zeng
and Dickinson, 1998; Oleson et al., 2010]. However, using the current zoh scheme, CLM substantially
underestimates diurnal variations of Ts, similar to other LSMs [Chen et al., 2010; Zeng et al., 2012; Zheng et al.,
2012]. Through both theoretical analyses and data-model comparison, Zeng et al. [2012] suggested some
revisions for the model parameterization schemes that substantially improved Ts simulations over two
semiarid sites in both CLM3.5 and the Noah LSMs. Here we extend those modifications to global CLM4.0
simulations, and we simply describe the new parameterization schemes.

Zeng et al. [2012] modified the zoh formulation

ln
zom
zoh

� �
¼ a

u�zom
v

� �b
; (3)

where ν=1.5× 10�5 m2s�1 is the molecular viscosity, u* is the friction velocity, b=0.5, and a=0.36. These
values are 0.45 and 0.13 in the default CLM4.0, respectively. Over a semiarid site in summer, the typical value of
ln(zom/zoh) is about 1.4 and 5.1 before and after modifications, respectively, when u* = 0.3m/s and zom=0.01m.

Another model deficiency is that under stable conditions (usually during nighttime), the computed sensible
heat is near zero and largely underestimated, which leads to the decoupling of atmospheric boundary layer
from the land surface [Beljaars and Viterbo, 1998]. Zeng et al. [2012] also suggested constraining theminimum
friction velocity under stable condition

u�min ¼ 0:07
ρo
ρ

zom
zog

� �0:18

; (4)

Table 1. Information of Four Stations Used in This Study

Station Name

Location

Surface Emissivity Data Sources ReferencesLatitude (°N) Longitude (°E)

Desert Rock 36.62 �116.02 0.96 SURFRAD Augustine et al. [2000]
Colorado 40.13 �105.24 0.98 SURFRAD Augustine et al. [2000]
Tongyu 44.41 122.87 0.96 CEOP Yang et al. [2008]
Gaize 32.3 84.5 0.91 CEOP Chen et al. [2010]
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where ρ (ρ0) is the air density at reference (sea) level, zom is surface roughness length for momentum; and
zog = 0.01m is the roughness length of bare soil. A similar method has been widely used in eddy correlation
flux measurements from towers [Gu et al., 2005]. Because air density correlates with the terrain height,
equation (4) implicitly considers the elevation effects in the computation of sensible heat. Equation (4) is not
used in the default CLM4.0.

In the modeling experiments presented below, CLM4.0 was run offline driven by an observation-based
global atmospheric forcing data set [Qian et al., 2006], which has a horizontal resolution of T62 (~1.8°).
The model was run at a 1.9° × 2.5° horizontal resolution, which is one of the default CLM4 setup resolutions.
This resolution is closest to the forcing data resolution, which reduced the error due to the horizontal
interpolation. Other model inputs, such as vegetation parameters and soil properties with much higher
resolutions (varying from 5′ to 1°), are from the standard model data package [Oleson et al., 2010]. The
model was run for 1995–2004, with the multiyear “spun-up” initialization [Lawrence et al., 2012], and the
results in 2003 were analyzed and compared with both observations and satellites products.

Two model experiments were conducted: one with the default model parameterization referred to as CLM-C
and another with modifications described by equations (3) and (4) denoted as CLM-N. The hourly outputs of
LW↑ and surface emissivity combined with LW↓ in the atmospheric forcing data set were used to compute Ts
from equation (1) over global land areas. In order to compare with MODIS, the modeled Ts was interpolated
to the four MODIS satellite overpass times.

4. Results
4.1. Comparisons of Ts From CLM4.0, MODIS, and In Situ Measurements

Ground measurements at four stations with barren-dominant land cover are used to compare with both
MODIS and CLM4.0 simulations. Based on equation (1), Ts at each station was computed from the
measurements of surface-incoming and surface-emitted LW, combined with surface emissivity from the site
documentations (Table 1). Note that the CEOP site provides the Ts values at some stations (e.g., Gaize), which
are also derived from equation (1), and the differences of the two methods are very small. Using inverse
distance weighted interpolation method, MODIS Ts over each station was interpolated from four closest 0.05°
pixels, and the modeled Ts was also interpolated from the four closest model grid boxes.

The existence of snow in winter reduces the accuracy of satellite Ts, and the in situ observational data also
contains larger numbers of missing values. Therefore, only the July 2003 Ts from four selected semiarid stations
were used to evaluate bothmodel andMODIS Ts. The monthly mean Ts was computed using only the days that
were observed as clear sky by MODIS. For example, over Desert Rock at 1:30P.M., there were 25days in July
2003 under clear-sky conditions, and the monthly mean in situ and modeled Ts values were calculated using
only those 25days. Table 2 compares themonthlymean Ts differences at 4 times over the four stations between
MODIS and CLM4.0 simulations versus in situ observations in July 2003. These stations over dry regions show
large diurnal variations. For example, the monthly averaged Ts differences between 1:30 P.M. and 1:30A.M.
under clear-sky conditions from in situ measurements are 29.9 K, 27.2 K, 17.22 K, and 25.18 K over Desert Rock,
Colorado, Tongyu, and Gaize, respectively. Both MODIS andmodeled Ts show negative mean differences (MDs)
compared with the in situ data (i.e., are cooler than in situ Ts) at most times at all four stations, andmost MDs are
statistically significant at 1% level (Table 2). Both CLM-C and CLM-N have large negative MDs (up to�11.41 K for
CLM-C and �8.91 K for CLM-N, both at 1:30 P.M. at Gaize). MODIS has negative MDs at night, ranging from
�1.93 K (10:30P.M. at Tongyu) to �5.21K (10:30 P.M. at Gaize), while its MDs could be positive or negative
during daytime, ranging from �2.30 K (10:30A.M. at Tongyu) to 10.61K (10:30A.M. at Gaize). If the abnormally
high MD at 10:30A.M. at Gaize is excluded, the monthly mean daytime MODIS MDs are generally smaller in
magnitude than nighttime values because of the partial cancelation of negative/positive MDs occurring on
different days during the day with less interday variability of the biases at night (figure not shown).

The Root-Mean-Square-Difference (RMSD) between the different Ts data sets used here would be dominated
by these large MDs. However, these MDs are not necessarily due to errors in a specific data set and may be
due to representative differences between them (e.g., differences in the spatial resolution, including
potentially the land cover between the data sets). Therefore, we compute the standard derivation of
differences (STDd) between model or MODIS results and in situ observations. Recognizing the standard
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deviations of the in situ data (STDo) at different overpass times are different, we scaled the STDd with STDo at
each overpass time. Table 3 shows that the ratios of STDd to STDo vary from 0.50 to 1.81 for MODIS, 0.20 to
1.18 for CLM-C, and 0.20 to 1.33 for CLM-N. These ratios are on average greatest at 10:30 P.M. for MODIS and
at 1:30 P.M. for CLM-C and CLM-N.

Among the 16 MD values in each column of Table 2, 11 (or 10) values fromMODIS are smaller in magnitude
than those from CLM-C (or CLM-N). On the other hand, 11 of the 16 ratios in Table 3 from CLM-C and CLM-N
are smaller than those from MODIS. CLM-N has 15 values smaller in magnitude than CLM-C in Table 2,
demonstrating the improvement in CLM-N, while 13 of the 16 ratios in Table 3 are within 0.02 between

CLM-C and CLM-N.

While the better performance of MODIS
data compared to the model in terms of
MDs with respect to the in situ data is
expected, it is still surprising to see the
much larger MODIS MDs (in magnitude) in
Table 2 than reported in previous studies
[Wan et al., 2002, 2004; Wan and Li, 2008].
For example, Wan et al. [2004] indicated
that the Ts biases of MODIS from station
observations are within 1 K. A potential
reason is that previous validation studies
used the MODIS Ts data at the highest
resolution (1 km) under clear-sky
conditions, while we use the MODIS data at
0.05° (~5 km) grid cells for global studies. In
general, the 5 km MODIS Ts data used in
Tables 2 and 3 may contain partially cloudy
conditions and hence contain more days of
data in a given month. For instance, at
10:30 P.M. at Gaize, while the MODIS MD is
�5.21 K in July, it is less than 1.45 K in

Table 3. Ratios of the Standard Deviations of Ts Differences (STDd)
Between Model or MODIS Results and In Situ Observations to the
Standard Deviations of In Situ Observations (STDo) Over Four Stations
at Four Satellite Overpass Times in July 2003

STDd/STDo

MODIS CLM-C CLM-N

Desert Rock 1:30 A.M. 0.50 0.53 0.55
10:30A.M. 1.05 0.79 0.85
1:30 P.M. 0.96 1.18 1.33
10:30 P.M. 1.56 0.56 0.58

Colorado 1:30 A.M. 0.82 0.91 0.91
10:30A.M. 1.06 0.95 0.95
1:30 P.M. 0.70 0.97 0.98
10:30 P.M. 1.05 0.83 0.83

Tongyu 1:30 A.M. 0.62 0.20 0.20
10:30A.M. 1.21 1.02 1.02
1:30 P.M. 1.04 1.05 1.05
10:30 P.M. 0.73 0.51 0.52

Gaize 1:30 A.M. 1.50 1.02 1.00
10:30A.M. 0.91 0.81 0.79
1:30 P.M. 1.02 0.74 0.71
10:30 P.M. 1.81 0.95 0.94

Table 2. Monthly Mean Ts Differences Between MODIS, CLM-C, and CLM-N Versus In Situ Observations Over Four
Stations at Four Satellite Overpass Times in July 2003a

Ts Differences (K)

Tair Differences (K) SWdn Differences (W/m2)MODIS CLM-C CLM-N

Desert Rock 1:30 A.M. �4.14 �6.47 �5.69 �10.31 0.
10:30 A.M. 2.23 �3.79 �1.85 �3.02 �142.46
1:30 P.M. �1.30 �4.35 �1.61 �1.75 �154.26
10:30 P.M. �4.17 �5.72 �4.92 �8.47 0

Colorado 1:30 A.M. �4.07 �5.22 �4.78 �9.98 0
10:30 A.M. 2.27 �7.02 �6.83 �4.34 �207.06
1:30 P.M. �1.26 �5.95 �5.53 �3.65 �77.63
10:30 P.M. �4.26 �5.07 �4.55 �7.99 0

Tongyu 1:30 A.M. �2.55 �0.36 �0.15 �0.87 0
10:30 A.M. �2.30 �5.31 �4.86 �4.15 �215.74
1:30 P.M. �1.15 �2.43 �2.03 �1.94 �78.54
10:30 P.M. �1.93 0.19 0.40 0.71 0

Gaize 1:30 A.M. �3.51 �2.27 �1.23 �3.76 0
10:30 A.M. 10.61 �8.76 �7.06 �9.25 �215.91
1:30 P.M. 1.92 �11.41 �8.91 �7.79 �186.43
10:30 P.M. �5.21 �2.83 �1.59 �3.99 0

aOnly the values under clear-sky conditions as indicated by the MODIS Ts data are used. The corresponding biases
between Tair and downward shortwave radiation (SWdn) between CLM forcing and in situ measurements (i.e., forcing
minus observation) are also shown in the last two columns. Biases that are statistically significant at the 1% level based
on the student’s t test are indicated in bold.
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magnitude for 25% of the days. On the other hand, at 10:30 A.M. at Gaize, the MODIS MD is 10.61 K in
July, and such a large positive bias indicates the deficiency of the MODIS data at this time over this high-
altitude location.

It is also interesting to note that MODIS from Aqua (1:30 A.M./1:30 P.M.) performs better than that from
Terra (10:30 A.M./10:30 P.M.) compared with in situ measurements. For nighttime MDs (at 1:30 A.M. and
10:30 P.M.) and daytime values (at 1:30 P.M. and 10:30 A.M.) in Table 2, Aqua (or Terra) gives smaller MDs in
magnitude 7 (or just 1) times. Similarly, Aqua (or Terra) gives smaller ratios 7 (or just 1) times in Table 3,
which might be related to the Aqua instrument being more temporally stable [Wu et al., 2013]. On the other
hand, the large interday variability of Ts MDs with both negative and positive values reduces the monthly
averaged MDs, although at night the Ts heterogeneity in remotely sensed products is smaller than in
daytime [Trigo et al., 2008].

The MDs of CLM-N in Table 2 are also much larger than those reported in Zeng et al. [2012] at both Desert
Rock and Gaize sites. The improvement of daytime Ts in CLM-N over CLM-C is substantial in Zeng et al. [2012],
while it is more moderate in Table 2. These different results can be reconciled along several different lines. In
the results presented here, the model was run globally at coarse resolution (1.9° × 2.5°) where only 65% of the
grid box near Desert Rock was of the bare soil, while in Zeng et al. [2012] CLM4.0 was run at a single point with
100% bare soil fraction at this site. Furthermore, the atmospheric forcing data, particularly air temperature
(which is related to elevation) and downward solar radiation (SWd), are very different between our
simulations based on the Qian et al. [2006] data and the in situ measurements used in Zeng et al. [2012]. For
instance, Table 2 shows that 12 of the 16 air temperature differences between Qian et al. [2006] and in situ
data are large and negative (<�3 K), and all SWd differences are negative. While some of these differences in
the atmospheric forcing are due to errors in each data set, the large difference in spatial resolution of each
atmospheric data set would also introduce some differences. In section 4.3, different atmospheric forcing
data sets and in situ observations will also be compared over more stations.

To extend the comparisons to the whole year of 2003, we use hourly Ts from observations, CLM-C, andMODIS
over 12 stations for all months in 2003, and the results are shown in Table S1 and Figures S1–S4. Among the
48 correlation coefficient (r) values in one vertical column, 34 (MODIS) and 32 (CLM-C) values are larger than
0.9, indicating that both model and MODIS and CLM-C can generally capture the temporal variation of Ts
observations at most stations. The correlations between MODIS Ts and observations are slightly larger than
those betweenmodel simulations and observations at all sites, while the RMSD is smaller fromMODIS Ts than
that from model simulations, with 37 of 48 RMSD values from MODIS smaller than those from CLM-C.

Figures S1–S4 compare the Ts values from MODIS, CLM-C, and in situ observations at the four MODIS
overpass times. The model underestimates the Ts for most of the days and most of the stations. In particular,
the magnitude of negative biases in CLM-C can be more than 20°C in spring over the three Tibetan Plateau
sites (i.e., Gaize, MS3478, and BJ). The poor model performance over Gaize is caused by both the poor
representation of model parameterization schemes and biases in the forcing data over the Tibetan Plateau
[Wang and Zeng, 2011].

4.2. Evaluation of the CLM4.0 Modeling With MODIS Ts

Using the 0.05° MODIS Ts data to evaluate global model output is not straightforward and involves several
steps. First, at each satellite overpass time (4 times daily), MODIS Ts data are spatially averaged within each
CLM4.0 grid box with the requirement that at least 20% of the model grid box is defined as land in MODIS.
Each 1.9° × 2.5° CLM4.0 grid box potentially includes 1900 0.05° × 0.05° MODIS observations. Another
important consideration is the potential for cloud contamination adversely affecting MODIS Ts. Scarino et al.
[2013] found increased agreement between remotely sensed and in situ Ts with decreasing cloud cover. The
number of MODIS grid cells observed as clear sky in each model grid box varies with month and location.
Hence, we also calculate the clear-sky fraction (CF) as the percentage of MODIS grid cells within each CLM4.0
grid box that are declared as clear on a given day. The CF values for an individual day averaged over global
land (excluding the Antarctic) vary from 45 to 60%, and the monthly mean values in July are a little bit larger
than in January.

Figure 1 shows the distribution of global CLM4.0 grid boxes based on the monthly mean of MODIS daily CF,
binned into 10% intervals from 0 to 100%, at each satellite overpass time in January and July 2003,
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respectively. The clear-sky fraction is greater than 90% for ~25% of the model grid boxes in January and
~28% in July, primarily over semiarid and arid regions, e.g., northern Africa, Middle East, western China,
western and central Australia, and southwestern United States. CF is less than 10% for ~25% of model grid
boxes in January and ~20% in July, primarily over tropical rainforests such as the Amazonia, equatorial Africa,
and southeastern Asia. The higher percentages of model grid boxes at the low CF bin in January (Figure 1a)
than in July (Figure 1b) are related to the more extensive cloud cover in the wet season (including January)
over tropical rainforests. At four overpass times, the percentage of model grid boxes with CF< 10% is highest
at 1:30 A.M., consistent with the frequent appearance of precipitation maximum at nighttime over rainforests
[Angelis et al., 2004]. The percentage of model grid boxes for CF> 90% in July (Figure 1b) is higher during the
day (at 10:30 A.M. and 1:30 P.M.) than at night (at 1:30 A.M. and 10:30 P.M.), probably because of the higher
relative humidity at night over dry regions. For CF between 10 and 90%, the percentage of model grid boxes
varies from 8.7 to 5.1%, and in the same CF bin they change little with satellite overpass times.

Since MODIS Ts observations are for clear-sky conditions only, the model Ts must also be screened for cloudy
conditions before being compared to MODIS-observed values. This screening is complicated by the spatial
and temporal aggregation between the observed Ts and monthly mean modeled values. To address this, we
first bin the daily MODIS CF values for all model grid cells into 10% intervals from 0 to 100%. We then calculate
the monthly model Ts for each bin from hourly CLM4.0 Ts from every day of the month. That is, for different
daily MODIS CF bins, the number of grid boxes used to compute the monthly mean is different. For example,
in July over the Northern Hemisphere (NH), about 75% of the model land grid boxes were used in the
computation of monthly mean values at 1:30 P.M. for CF> 50%, while only about 50% of the model land grid
boxes were used for CF> 90%. Furthermore, we require that the daily MODIS Ts data at each overpass time
are available for at least 10 (clear) days in a month for the calculation of the monthly mean. Using these
criteria, it is found that the MD between the modeled and remotely sensed Ts (i.e., mean CLM minus MODIS
Ts) generally decrease with increasing CF values over both hemispheres. For instance, at 1:30 P.M. in July
2003, the MD over Southern Hemisphere (SH) land areas varies from 0.59 K (for CF< 10%) to �0.32 K (for
CF> 90%), while over NH, it varies from 1.55 K (for CF< 10%) to 1.04 K (for CF> 90%).

For CF> 50%, Figure 2 shows the spatial distribution of the differences between CLM-C and MODIS Ts at four
satellite overpass times averaged in July 2003, respectively. The Ts biases display large spatial and diurnal

Figure 1. (a and b) CLM4.0 grid box number percentages over land (excluding the Antarctic) versus clear-sky percentages
using results from each overpass for each day for the whole month in January and July 2003.
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variations, and the magnitudes of differences are substantial over some regions. During the day, areas
with negative biases are mainly located at midlatitude arid and semiarid regions, while at nighttime
positive biases are dominant over most of land areas. The global mean difference in NH varies from
�2.17 K (at10:30 A.M.) to 4.33 K (10:30 P.M.), while in SH it varies between �2.40 K (10:30 A.M.) and 4.09 K
(10:30 P.M.). At 1:30 P.M., the mean differences over two hemispheres are smallest in magnitude among all
four times, with values of 0.07 K in SH and 1.25 K in NH, respectively. Wan et al. [2004] also found that
MODIS Ts at 1:30 P.M. is closer to in situ measurements and suggested that Ts at 1:30 P.M. would be more
suitable for climate change studies since the 1:30 P.M. local solar time is closer to the maximum
temperature of the land surface.

The mean differences between CLM-C and MODIS in January are on average larger in magnitude than those
in July (Figure S5). For instance, the mean difference is 5.80 K in SH (versus 4.09 K in July in Figure 2). At
1:30 P.M., the mean difference over SH of 0.18 K is also the smallest in magnitude among all four times over
both hemispheres. In January, due to the snow existence over northern high latitudes (and some midlatitude
regions), satellite-retrieved surface products might contain large errors, and the comparison of CLM4.0 and
MODIS data may not be appropriate.

4.3. Performance of the CLM4.0 With Equations (3) and (4)

As mentioned in Zeng et al. [2012], equation (3) primarily increases the daytime Ts with a negligible effect on
nighttime Ts. Equation (4) slightly increases Ts under very weak wind and stable conditions at night. Figure 3
shows the Ts differences between CLM-N and CLM-C with respect to bare ground fractions in 5% intervals.
The Ts from CLM-N is larger than that from CLM-C, and the differences increase with the bare soil fraction. The
difference is more pronounced both during the day (compared to night) and during the summer (compared
to winter). The largest difference is at 1:30 P.M. in January over SH, and the values are up to 6 K over the totally
bare covered regions.

Therefore, we mainly focus on the evaluation of equations (3) and (4) with MODIS at daytime overpasses over
regions where bare ground fraction is greater than 30%. These regions include most of semiarid and arid
areas, such as northern Africa, Middle East, northwest China, Tibetan Plateau, central and western Australia,
and small areas of southwestern United States.

Figure 2. Monthly Ts differences between CLM-C and MODIS at four overpass times in July 2003. At each overpass time, CLM-C monthly Ts values are computed only for
grid boxes withMODIS clear-sky fraction> 50% for at least 10 days in themonth. The areal weighted values over each hemispheric land areas are also shown in the figure.
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Figures 4 and 5 plot the global distribution of Ts differences between CLM-N and CLM-C and between CLM-C
and MODIS at daytime overpasses. The Ts differences vary seasonally and spatially, and they are greater in
July than in January. The Ts differences between CLM-C and MODIS are generally negative over most regions,
and they are less than�8 K (i.e., greater than 8 K in magnitude) at 10:30 A.M. over part of the northern China,
Arabian Peninsula, and Sahara Desert (Figures 4c and 5c). The differences between CLM-N and CLM-C are

Figure 3. Hemispheremean Ts differences between CLM-N and CLM-C versus bare soil fraction in 5% intervals at four satellite
overpass times averaged in January and July 2003. NH and SH denote Northern and Southern Hemispheres, respectively.

Figure 4. Global distribution of Ts differences between CLM-N and CLM-C at (a) 10:30 A.M. and (b) 1:30 P.M. and between CLM-C and MODIS at (c) 10:30A.M. and (d)
1:30 P.M. in July 2003. At each satellite overpass time, monthly Ts is computed over grid boxes with bare soil fraction greater than 30% and MODIS clear-sky fraction
greater than 50% for at least 10 days in the month.
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positive over most regions, indicating that, compared with CLM-C, CLM-N overall reduces the model cold
biases from MODIS Ts at daytime overpasses shown in Figure 4.

Table 4 summarizes the hemisphere-averaged results from Figures 4 and 5. The differences are all negative
except at 1:30 P.M. in July over NH between CLM-N and MODIS. This issue will be further discussed in
section 4.4. The mean differences between CLM-N and MODIS are generally smaller than those between
CLM-C and MODIS, suggesting that equations (3) and (4) reduce the cold bias of CLM-C.

Table S1 compares CLM-C and CLM-N results against in situ observations for all months of 2013 at 12 stations.
Both CLM-C and CLM-N show similar performances with respect to the correlation, while CLM-N has smaller
RMSDs than CLM-C overall, further indicating the improvement of CLM-N over CLM-C.

4.4. Possible Reasons for Ts Biases Between CLM4.0 and MODIS

The large differences between the Ts estimates fromCLM4.0 andMODIS could be due to errors in either data set
or representative differences between them.With no independentmeasure of Ts at global scales, it is difficult to
definitively attribute a cause to the large mean differences obtained above. However, cross-referencing these

Figure 5. (a–d) As Figure 4 but for January 2003.

Table 4. Monthly Ts Differences (K) Averaged Over Northern Hemisphere (NH) and Southern Hemisphere (SH) Land Grid
Boxes Between CLM-C and MODIS and Between CLM-N and MODIS in January and July 2003, Respectivelya

SH NH

CLM-C and MODIS CLM-N and MODIS CLM-C and MODIS CLM-N and MODIS

January 10:30A.M. �7.73 �6.31 �6.50 �6.14
1:30 P.M. �4.36 �1.98 �2.65 �1.76

July 10:30A.M. �5.65 �5.27 �5.60 �4.47
1:30 P.M. �3.69 �2.86 �0.75 1.25

aAt each MODIS satellite overpass time, only the grid boxes meeting two criteria are used to compute monthly Ts in
CLM: (a) bare fraction (BF) is greater than 30% and (b) MODIS clear-sky fraction (CF) is greater than 50% for at least
10 days in the month.
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mean differences with independent information on the accuracy of each data set can help to confirm known
problems in each data source.

For the large Ts differences in Figure 4 and Table 4, we can identify several possible reasons. First, there are
deficiencies in the surface energy balance computation in CLM4.0. In the past few years, many efforts have
been made to reduce such deficiencies [Zeng and Wang, 2007; Wang and Zeng, 2009; Zeng et al., 2012].
Equations (3) and (4) from Zeng et al. [2012] are also among such efforts. Indeed, Table 4 shows that these
revisions reduce the cold bias of CLM-C (compared to MODIS).

Second, there are deficiencies in the atmospheric forcing data [e.g., Guo et al., 2006; Wang and Zeng, 2011].
For global land areas, accurate atmospheric forcing data are not available. The current global forcing data sets
are usually based on reanalysis data sets with bias correction by limited in situ or remote-sensed observations
[e.g., Qian et al., 2006; Sheffield et al., 2006]. Wang and Zeng [2011] found that the precipitation and air
temperature in the atmosphere forcing data of Qian et al. [2006] used in CLM4.0 are largely biased compared
with in situ observation-based data over China, and these biases affect the modeled soil hydrology variables.
As mentioned earlier, there are also large biases, compared to in situ data, in the air temperature and
downward solar radiation in the forcing data of Qian et al. [2006] (Table 2), which are likely in part due to
differences in spatial resolution and elevation. Qian et al. [2006] has coarse horizontal resolutions (T62), while
the currently released model version 4.5 (CLM4.5) provides a new global atmospheric forcing data set, which
is a hybrid product of Climatic Research Unit (CRU) and NCEP/National Center for Atmospheric Research
reanalysis products (referred as to CRU-NCEP, available at http://www.cesm.ucar.edu/models/cesm1.2/clm/
clm_forcingdata_esg.html). The missing values of CRU-NCEP were filled with the Qian et al. [2006] data. The
horizontal resolution of CRU-NCEP is 0.5° × 0.5° (latitude × longitude), which is much higher than that of Qian
et al. [2006].

To examine the quality of atmospheric forcing data, the daily Tair and SWdn values from both forcing data
sets were compared with in situ observation in 2003 at 12 CEOP reference stations (Table S2). At each station,
the correlations of Tair derived from both forcing data sets and observations are very similar and larger than
0.9 over most stations. Over 10 of the 12 stations, the correlations of SWdn from Qian et al. [2006] are larger
than those from CRU-NCEP. The RMSDs of Tair from CRU-NCEP over 10 of the 12 stations are smaller than
those from Qian et al., while the RMSDs of SWdn from CRU-NCEP over all stations are larger than those from
Qian et al. These results and additional analyses of Tair and SWdn for each month of 2013 at the 12 stations
indicate that the higher horizontal resolution of the CRU-NCEP forcing data does not reduce the Tair and
SWdn biases of Qian et al. This is expected, since both forcing data sets are based on similar source data but
use different derivation methods, and the horizontal interpolation would also introduce errors. As discussed
earlier, in situ observation-based forcing data may improve model simulations [Zeng et al., 2012]; however,
they are not available over global land areas.

Furthermore, surface emissivity is used in the computation of Ts in both model and remote sensing products
[Seemann et al., 2008; Zhou et al., 2011]. The Ts differences between CLM4.0 and MODIS are partially affected
by the different treatment of surface emissivity in the Ts computation in equation (1). Surface emissivity is
constant over bare soil and is a simple function of vegetation leaf area index in CLM4.0 (equation (2)), while
the MODIS surface emissivity is estimated from land cover type in each 0.05° pixel through MODIS thermal
infrared (TIR) bands and a classification-based emissivity model [Snyder et al., 1998].Wan et al. [2004] pointed
out that errors in the classification-based emissivity may be larger over semiarid and arid regions due to
larger temporal and spatial variations. Surface emissivity over bare soil is affected by many factors (e.g.,
surface chemical composition) and the wavelength at which the emissivity is measured [Van De Griend and
Owe, 1993; Jin and Liang, 2006]. In general, the dependence of Ts on emissivity in CLM is relatively weak: for
upward and downward longwave radiative fluxes of 400 and 300 Wm�2, Ts increases by 1.0°C only based on
equation (1) for the decrease of emissivity from 0.95 to 0.9. In contrast, the dependence MODIS Ts on
emissivity is stronger in the remote sensing retrieval [Wan et al., 2002, 2004]. As mentioned earlier, CLM4.0
results represent the effective Ts over all land cover types present in each 1.9° × 2.5° grid box, while the
MODIS monthly Ts is computed from only the clear-sky 0.05° pixels in each grid box. We only used the days
with MODIS clear-sky fraction greater than 50% in each model grid box when we computed the monthly
average of the modeled Ts in Figures 3–5. This means that we essentially compared the clear-sky MODIS Ts
with model Ts under partially cloudy conditions. Since clouds decrease downward solar radiation, this would
introduce a cold bias of daytime Ts between CLM4.0 and MODIS. On the other hand, if we only consider days
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with MODIS clear-sky fraction greater than 90% in each 1.9° × 2.5° box, then the percentage of grid boxes
would be about 30% in July and less than 25% in January (Figure 1), and the number of such days in each grid
box would be very limited.

5. Summary and Further Discussions

Land skin temperature (Ts) is one of the important parameters in the energy exchange between the land
surface and atmosphere. Lack of global long-term in situ Ts observations is a barrier to understanding the
earth system. Land surface models and satellites provide two alternative ways to produce Ts. Various data
sources, however, contain deficiencies and limitations, and their comparison would provide some insights for
the data developers and users.

In this study, Ts from MODIS, in situ station measurements, and the Community Land Model version 4 (CLM4.0)
simulations in 2003 were compared. Two modifications (i.e., equations (3) and (4)) are also implemented into
CLM4.0. Hourly outputs of surface-emitted longwave radiation combined with the surface downward thermal
radiation fluxes are used to compute Ts over global land areas. MODIS Ts is only available during cloud-free
conditions, while modeled Ts is the averaged value of whole grid box regardless of cloud cover. Therefore, in
the comparison of modeled and MODIS Ts, the MODIS clear-sky information is used to make the comparison
more consistent.

The in situ measured skin temperature at 12 CEOP sites in 2003 were used to evaluate modeled andMODIS Ts
and the model forcing data sets. Results show that both MODIS and modeled Ts data sets can capture the
diurnal variation of Ts at all station locations with correlation coefficients larger than 0.9 over most sites but
also display distinct biases compared to the in situ data. For example, both MODIS and modeled Ts show
significant negative mean differences in July 2003, and the mean differences are statistically significant at the
1% level. The magnitude of biases varies by station and time. The MODIS Ts is generally closer to station
observations than the model simulations are. When comparing the monthly Ts generated from CLM4.0 and
MODIS, the MODIS clear-sky fraction at each overpass time was used as the constraint. Under 50% MODIS
clear-sky fraction conditions, global comparisons between the MODIS and modeled Ts show that their mean
differences vary spatially and seasonally. Over land areas, the mean differences are mostly negative during
the day (i.e., model has a cold bias compared to MODIS) and positive at night. The averagedmean biases over
Northern Hemisphere land areas vary from �2.17 K to 4.33 K in July and from �4.62 K to 1.37 K in January at
the four overpass times. The modified CLM4.0 reduces this cold bias in the daytime over bare ground-
dominated regions, while at nighttime its effect is negligible. Sensitivity tests also show the thresholds of
MODIS clear-sky fraction used to compute the monthly mean from hourly Ts also affect the biases between
modeled and MODIS Ts. The larger the clear-sky fraction, the smaller the biases (and at the same time, the
number of grid cells is also reduced).

Five factors were discussed to explore the possible reasons for the Ts differences among model simulations,
MODIS, and in situ observations, including the difficulty in properly accounting for cloud cover information at
the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation,
atmospheric forcing data, surface emissivity, and MODIS Ts data. It is unclear which factor is dominant.
However, it is certain that a comparison of remotely sensed and modeled Ts requires a consistent treatment
of cloudy conditions between the two data sets, including in the calculation of spatially and/or temporally
aggregated values. It is also found that the air temperature and shortwave radiation of model forcing data are
biased from station observations, and those biases do not decrease when using a higher spatial resolution
forcing data set.

While data comparison of this study is not directly relevant to most data assimilation applications, this work
has some obvious implications for the assimilation of remotely sensed Ts into Earth system models. Most
notably, the large biases between modeled and remotely sensed Ts are not unique to this study [e.g., Ghent
et al., 2010; Scarino et al., 2013] and must be addressed before Ts data can be assimilated (since standard
data assimilation techniques are contingent on the observations and the model being bias free). This is
usually achieved by rescaling the observations to be consistent with the model Ts prior to assimilation [e.g.,
Ghent et al., 2010; Reichle et al., 2010]. Additionally, the need to carefully account for cloudy conditions and
surface emissivity when comparing modeled and observed Ts also applies to the assimilation of (clear sky)
Ts observations, particularly where those observations are spatially aggregated before assimilation.
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This work is a first step toward evaluating LSM outputs using the remotely sensed Ts products over global
land areas and will provide useful guidance for future studies. Our comparison between the CLM4.0 modeled
and MODIS observed Ts established the monthly mean differences between them, which helped to identify
some deficiencies in the CLM4.0 model.
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